E4982A LCR Meter

1 MHz to 300 MHz/500 MHz/1 GHz/3 GHz

Specification (spec.)

Warranted performance. All specifications apply at 23 $^{\circ}$ C \pm 5 $^{\circ}$ C unless otherwise stated, and 30 minutes after the instrument has been turned on. Specifications include guard bands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Following supplemental information is intended to provide information that is helpful for using the instrument.

Typical (typ.)

Expected performance of an average unit which does not include guardbands. It is not covered by the product warranty.

Supplemental performance data (SPD)

Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not covered by the product warranty.

General characteristics or nominal (nom.)

A general, descriptive term that does not imply a level of performance. It is not covered by the product warranty.

Basic Measurement Characteristic

Measurement parameters	
Impedance parameters	$ Z $, $ Y $, Ls, Lp, Cs, Cp, Rs, Rp, X, G, B, D, Q, θ z [°], θ z [rad], θ y [°], θ y [rad], User defined parameter (A maximum of four parameters can be displayed at one time.)
Measurement range	
Impedance parameters	140 m Ω to 4.8 k Ω (Frequency = 1 MHz, Averaging factor = 8, Measurement time mode = 3, Oscillator level = 1 dBm, Measurement uncertainty \leq ± 10%, Calibration is performed within 23 °C ± 5 °C, Measurement is performed within ± 5 °C from the calibration temperature)

Source Characteristics

Frequency	
Range	1 MHz to 300 MHz (Option 030)
	1 MHz to 500 MHz (Option 050)
	1 MHz to 1 GHz (Option 100)
	1 MHz to 3 GHz (Option 300)
Resolution	1 kHz ¹
Uncertainty	± 10 ppm (23 °C ± 5 °C)
	± 20 ppm (5 °C to 40 °C)
Oscillator level	
Cable length = 1 m	
Power range (When 50 Ω LOAD is connected to test port)	-40 dBm to 1 dBm
Current range (When SHORT is connected to test port)	0.0894 mArms to 10 mArms
Voltage range (When OPEN is	4.47 mVrms to 502 mVrms
connected to test port)	
Uncertainty (When 50 Ω LOAD is	(23 °C ± 5 °C)
connected to test port)	± 2 dB (frequency ≤ 1 GHz)
	± 3 dB (frequency > 1 GHz)
	(5 °C to 40 °C)
	± 4 dB (frequency ≤ 1 GHz)
	± 5 dB (frequency > 1 GHz)
Resolution	0.1 dB (When the unit is set at mV or mA, the entered value is rounded to 0.1 dB resolution.)
Cable length = 2 m (When option 0	
Power range	Subtract the following attenuation from the power (setting value) at 1 m cable length:
	Attenuation [dB] = 0.42 √f (f: Frequency [GHz])
Uncertainty (When 50 Ω LOAD is	(23 °C ± 5 °C)
connected to test port)	± 3 dB (frequency ≤ 1 GHz)
	± 4 dB (frequency > 1 GHz)
	(5 °C to 40 °C)
	± 5 dB (frequency ≤ 1 GHz)
	± 6 dB (frequency > 1 GHz)
Resolution	0.1 dB (When the unit is set at mV or mA, the entered value is rounded to 0.1 dB resolution.)

Output impedance

Output impedance	50 Ω (nominal)	

^{1.} Applies to the units with firmware revision B.02.20 or later. (For the units with firmware revision below B.02.20, the resolution is 100 kHz.)

Measurement Accuracy

Condition for definition of accuracy:

- 23 °C ± 5 °C
- 7-mm connector of 3.5-mm-7-mm adapter connected to 3.5-mm terminal of test heads

Basic measurement uncertainty (Typical)

0.45 %

Measurement uncertainty

When OPEN/SHORT/LOAD calibration is performed:

	± (E _a + E _b) [%]
Δθ	$\pm \frac{\left(E_a + E_b\right)}{100} \left[rad\right]$
L, C, X, B	$\pm \left(E_a + E_b \right) \times \sqrt{(1 + D_x^2)} [\%]$
R, G	$\pm \left(E_{a} + E_{b} \right) \times \sqrt{\left(1 + \Omega^{2}_{x} \right)} \ \left[\% \right]$
ΔD	
at $\left D_x \tan \left(\frac{E_a + E_b}{100} \right) \right < 1$	$\pm \frac{\left(1+D_{X}^{2}\right) \tan \left(\frac{E_{a}+E_{b}}{100}\right)}{1 + D_{X} \tan \left(\frac{E_{a}+E_{b}}{100}\right)}$
Especially, at $D_x \le 0.1$	$\pm \frac{E_a + E_b}{100}$
Δ0	
at $\left O_x \tan \left(\frac{E_a + E_b}{100} \right) \right < 1$	$\pm \frac{\left(1+Q_{X}^{2}\right) \tan \left(\frac{E_{a}+E_{b}}{100}\right)}{1 \mp Q_{X} \tan \left(\frac{E_{a}+E_{b}}{100}\right)}$
Especially, at $\frac{10}{E_a + E_b} \ge 0_x \ge 10$	$\pm Q_{x}^{2} \frac{E_{a} + E_{b}}{100}$

Measurement uncertainty

When OPEN/SHORT/LOAD/Low Loss capacitance calibration is performed (SPD):

Z , Y	$\pm \left(E_{a} + E_{b} \right) \left[\% \right]$
Δθ	$\pm \frac{E_c}{100}$ [rad]
L, C, X, B	$\pm \sqrt{\left(E_a + E_b\right)^2 + \left(E_c D_x\right)^2} [\%]$
R, G	$\pm \sqrt{\left(E_a + E_b\right)^2 + \left(E_c O_x\right)^2} [\%]$
ΔD	
$at \left D_x \tan \left(\frac{E_c}{100} \right) \right < 1$	$\pm \frac{\left(1+D_{x}^{2}\right)\tan\left(\frac{E_{c}}{100}\right)}{1+D_{x}\tan\left(\frac{E_{c}}{100}\right)}$
Especially, at $D_x \le 0.1$	$\pm \frac{E_c}{100}$
Δ0	
at $\left O_x \tan \left(\frac{E_c}{100} \right) \right < 1$	$\pm \frac{\left(1+Q_{X}^{2}\right) \tan \left(\frac{E_{c}}{100}\right)}{1 + Q_{X} \tan \left(\frac{E_{c}}{100}\right)}$
Especially, at $\frac{10}{E_c} \ge 0_x \ge 10$	$\pm Q_{\chi}^2 \frac{E_c}{100}$

Definition of each parameter

X =	Measurement value o	of D							
X =	Measurement value of Q								
a =	Within 23 ± 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 ± 5 °C. Whe								
	the calibration is performed beyond 23 ± 5 °C, the measurement accuracy decreases to half that described.								
	Measurement Time:	Oscillator level = 1 dBm	± 0.54 % at 1 MHz ≤ frequency ≤ 100 MHz						
	Mode 1		± 0.62 % at 100 MHz < frequency ≤ 500 MHz						
			± 0.92 % at 500 MHz < frequency ≤ 1 GHz						
			± 2.05 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 4.42 % at 1.8 GHz < frequency ≤ 3 GHz						
		-20 dBm ≤ Oscillator level < 1 dBm	± 0.66 % at 1 MHz ≤ frequency ≤ 100 MHz						
			± 0.74 % at 100 MHz < frequency ≤ 500 MHz						
			± 1.11 % at 500 MHz < frequency ≤ 1 GHz						
			± 2.36 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 4.81 % at 1.8 GHz < frequency ≤ 3 GHz						
		-33 dBm ≤ Oscillator level < -20 dBm	± 1.13 % at 1 MHz ≤ frequency ≤ 100 MHz						
		oo dbiii 2 oodiilatoi tovot v 20 dbiii	± 1.22 % at 100 MHz < frequency ≤ 500 MHz						
			± 1.84 % at 500 MHz < frequency ≤ 1 GHz						
			± 1.84 % at 500 MHz < frequency ≤ 1 GHz ± 3.54 % at1 GHz < frequency ≤ 1.8 GHz						
			± 3.54 % at 1 GHz < frequency ≤ 1.8 GHz ± 6.35 % at 1.8 GHz < frequency ≤ 3 GHz						
		Oscillator level < -33 dBm	± 0.35 % at 1.8 GHZ < frequency ≤ 5 GHZ ± 2.08 % at 1 MHz ≤ frequency ≤ 100 MHz ± 2.26 % at 100 MHz < frequency ≤ 500 MHz						
		Oscillator level V -00 dbiii							
			± 2.27 % at 500 MHz < frequency ≤ 1 GHz						
			± 4.34 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 4.54 % at 1 GHz < frequency ≤ 1.6 GHz ± 7.60 % at 1.8 GHz < frequency ≤ 3 GHz						
	Mode 2	Oscillator level = 1 dBm	± 7.00 % at 1.0 GHz < frequency ≤ 3 GHz ± 0.52 % at 1 MHz ≤ frequency ≤ 100 MHz						
	Widde 2	Oscillator level – 1 dbiii	± 0.59 % at 100 MHz < frequency ≤ 500 MHz						
			, ,						
			± 0.89 % at 500 MHz < frequency ≤ 1 GHz						
			± 1.99 % at 1 GHz < frequency ≤ 1.8 GHz						
		00 dD (0ill-t 1 dD	± 4.34 % at 1.8 GHz < frequency ≤ 3 GHz						
		-20 dBm ≤ Oscillator level < 1 dBm	± 0.58 % at 1 MHz ≤ frequency ≤ 100 MHz						
			± 0.66 % at 100 MHz < frequency ≤ 500 MHz						
			± 0.98 % at 500 MHz < frequency ≤ 1 GHz						
			± 2.14 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 4.54 % at 1.8 GHz < frequency ≤ 3 GHz						
		-33 dBm ≤ Oscillator level < -20 dBm	± 0.81 % at 1 MHz ≤ frequency ≤ 100 MHz						
			± 0.90 % at 100 MHz < frequency ≤ 500 MHz						
			± 1.35 % at 500 MHz < frequency ≤ 1 GHz						
			± 2.74 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 5.31 % at 1.8 GHz < frequency ≤ 3 GHz						
		Oscillator level < -33 dBm	± 1.30 % at 1 MHz ≤ frequency ≤ 100 MHz						
			± 1.44 % at 100 MHz < frequency ≤ 500 MHz						
			± 1.44 % at 500 MHz < frequency ≤ 1 GHz						
			± 2.92 % at 1 GHz < frequency ≤ 1.8 GHz						
			± 5.59 % at 1.8 GHz < frequency ≤ 3 GHz						

Definition of each parameter (Continued)

Ea =	Mode 3	Oscillator level = 1 dBm	± 0.51 % at 1 MHz ≤ frequency ≤ 100 MHz
			± 0.59 % at 100 MHz < frequency ≤ 500 MHz
			± 0.87 % at 500 MHz < frequency ≤ 1 GHz
			± 1.97 % at 1 GHz < frequency ≤ 1.8 GHz
			± 4.32 % at 1.8 GHz < frequency ≤ 3 GHz
		-20 dBm ≤ Oscillator level < 1 dBm	± 0.55 % at 1 MHz ≤ frequency ≤ 100 MHz
			± 0.63 % at 100 MHz < frequency ≤ 500 MHz
			± 0.94 % at 500 MHz < frequency ≤ 1 GHz
			± 2.08 % at 1 GHz < frequency ≤ 1.8 GHz
			± 4.46 % at 1.8 GHz < frequency ≤ 3 GHz
		-33 dBm ≤ Oscillator level < -20 dBm	± 0.65 % at 1 MHz ≤ frequency ≤ 100 MHz
			± 0.80 % at 100 MHz < frequency ≤ 500 MHz
			± 1.20 % at 500 MHz < frequency ≤ 1 GHz
			± 2.50 % at 1 GHz < frequency ≤ 1.8 GHz
			± 5.00 % at 1.8GHz < frequency ≤ 3 GHz
		Oscillator level < -33 dBm	± 1.00 % at 1 MHz ≤ frequency ≤ 100 MHz
		Cookator tovot C CO abin	± 1.20 % at 100 MHz < frequency ≤ 500 MHz
			± 1.20 % at 500 MHz < frequency ≤ 1 GHz
			± 2.50 % at 1 GHz < frequency ≤ 1.8 GHz
Eb =	$\pm \left(\frac{Zs}{ z } + Y_0\right)$	× Zx × 100 [%]	$\pm 5.00 \%$ at 1.8 GHz < frequency ≤ 3 GHz (Zx : Measurement value of Z)
Eb =	$\pm \left(\frac{Zs}{ Zx } + Yo\right)$	× Zx) × 100 [%]	
	$\pm \left(\frac{Zs}{ Zx } + Yo\right)$ $\pm \left(0.06 + \frac{0.08}{10}\right)$	/	
Eb =	$\pm \left(0.06 + \frac{0.08}{10}\right)$	3×F 00 (%)	(Zx : Measurement value of Z) (F: Frequency [MHz])
	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from	3×F (%) [%] In the calibration temperature. Measurement accurace	(Zx : Measurement value of Z)
	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from	3×F (%) [%] In the calibration temperature. Measurement accurace	$(Zx : Measurement value of Z)$ $(F : Frequency [MHz])$ Ey applies when the calibration is performed at 23 ± 5 °C. When
Ēc =	$\pm \left(0.06 + \frac{0.08}{10}\right)$ Within 23 ± 5 °C from the calibration is per	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace	(Zx : Measurement value of Z) (F: Frequency [MHz]) cy applies when the calibration is performed at 23 ± 5 °C. When by decreases to half that described. (F: Frequency [MHz])
:C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	m the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8	$(Zx : Measurement \ value \ of \ Z)$ $(F : Frequency \ [MHz])$ Explores when the calibration is performed at 23 ± 5 °C. When by decreases to half that described. (F: Frequency [MHz]) $\pm (14 + 0.5 \times F) \ [m\Omega]$
C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8	($ Zx $: Measurement value of $ Z $) (F: Frequency [MHz]) Ey applies when the calibration is performed at 23 ± 5 °C. Where y decreases to half that described. (F: Frequency [MHz]) $\pm (14 + 0.5 \times F) [m\Omega]$ $\pm (19 + 0.5 \times F) [m\Omega]$
C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	m the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average	($ Zx $: Measurement value of $ Z $) (F: Frequency [MHz]) Ey applies when the calibration is performed at 23 ± 5 °C. Where y decreases to half that described. (F: Frequency [MHz]) $\pm (14 + 0.5 \times F) [m\Omega]$ $\pm (19 + 0.5 \times F) [m\Omega]$
:C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8	
:C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	m the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average	(Zx : Measurement value of Z) (F : Frequency [MHz]) Expapplies when the calibration is performed at 23 ± 5 °C. When the decreases to half that described. (F: Frequency [MHz]) $\pm (14 + 0.5 \times F) [m\Omega]$ $\pm (19 + 0.5 \times F) [m\Omega]$ $\pm (20 + 0.5 \times F) [m\Omega]$ $\pm (37 + 0.5 \times F) [m\Omega]$
:C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor < 8	
C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -33 dBm ≤ Oscillator level < 1 dBm, Average factor < 8 -33 dBm ≤ Oscillator level < -20 dBm, Average factor ≥ 8	
:C =	$\pm \left(0.06 + \frac{0.06}{10}\right)$ Within 23 ± 5 °C from the calibration is per Measurement Time:	n the calibration temperature. Measurement accurace formed beyond 23 ± 5 °C, the measurement accurace Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -33 dBm ≤ Oscillator level < 1 dBm, Average	(Zx : Measurement value of Z) (F : Frequency [MHz]) Expapplies when the calibration is performed at 23 ± 5 °C. When the decreases to half that described. (F: Frequency [MHz]) $\pm (14 + 0.5 \times F) [m\Omega]$ $\pm (19 + 0.5 \times F) [m\Omega]$ $\pm (20 + 0.5 \times F) [m\Omega]$ $\pm (37 + 0.5 \times F) [m\Omega]$

Definition of each parameter (Continued)

Zs =	Mode 2	Oscillator level= 1 dBm, Average factor ≥ 8	$\pm (13 + 0.5 \times F) [m\Omega]$
		Oscillator level= 1 dBm, Average factor < 8	$\pm (15 + 0.5 \times F) [m\Omega]$
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (16 + 0.5 \times F) [m\Omega]$
		factor ≥ 8	
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (24 + 0.5 \times F) [m\Omega]$
		factor < 8	
		-33 dBm ≤ Oscillator level< -20 dBm, Average	$\pm (24+0.5\times F) [m\Omega]$
		factor ≥ 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	$\pm (64 + 0.5 \times F) [m\Omega]$
		factor < 8	
		Oscillator level < -33 dBm	$\pm (133 + 0.5 \times F) [m\Omega]$
	Mode 3	Oscillator level = 1 dBm, Average factor ≥ 8	$\pm (12 + 0.5 \times F) [m\Omega]$
		Oscillator level = 1 dBm, Average factor < 8	$\pm (14 + 0.5 \times F) [m\Omega]$
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (15 + 0.5 \times F) [m\Omega]$
		factor ≥ 8	
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (20 + 0.5 \times F) [m\Omega]$
		factor < 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	\pm (20 + 0.5 × F) [mΩ]
		factor ≥ 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	\pm (50 + 0.5 × F) [mΩ]
		factor < 8	
		Oscillator level < -33 dBm	$\pm (100 + 0.5 \times F) [m\Omega]$
Y0 =	Within 23 ± 5 °C from	the calibration temperature. Measurement accurac	by applies when the calibration is performed at 23 ± 5 °C. When
	the calibration is perfe	ormed beyond 23 ± 5 °C, the measurement accurac	y decreases to half that described. (F: Frequency [MHz])
	Measurement Time:	Oscillator level = 1 dBm, Average factor ≥ 8	$\pm (22 + 0.15 \times F) [\mu S]$
	Mode 1	Oscillator level = 1 dBm, Average factor < 8	$\pm (28 + 0.15 \times F) [\mu S]$
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (30 + 0.15 \times F) [\mu S]$
		factor ≥ 8	·
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (53 + 0.15 \times F) [\mu S]$
		factor < 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	$\pm (52 + 0.15 \times F) [\mu S]$
		factor ≥ 8	·
		-33 dBm ≤ Oscillator level < -20 dBm, Average	\pm (110 + 0.15 × F) [μ S]
		factor < 8	
		Oscillator level < -33 dBm	$\pm (247 + 0.15 \times F) [\mu S]$
	Mode 2	Oscillator level = 1 dBm, Average factor ≥ 8	$\pm (20 + 0.15 \times F) [\mu S]$
		Oscillator level = 1 dBm, Average factor < 8	$\pm (23 + 0.15 \times F) [\mu S]$
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (24 + 0.15 \times F) [\mu S]$
		factor ≥ 8	·
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (35 + 0.15 \times F) [\mu S]$
			· ·
		factor < 8	
			± (35 + 0.15 × F) [μS]
		factor < 8 -33 dBm ≤ Oscillator level < -20 dBm, Average factor ≥ 8	± (35 + 0.15 × F) [μS]
		-33 dBm ≤ Oscillator level < -20 dBm, Average	± (35 + 0.15 × F) [μS] ± (63 + 0.15 × F) [μS]
		-33 dBm ≤ Oscillator level < -20 dBm, Average factor ≥ 8	·

Definition of each parameter (Continued)

Yo =	Mode 3	Oscillator level = 1 dBm, Average factor ≥ 8	± (19 + 0.15 × F) [μS]
		Oscillator level = 1 dBm, Average factor < 8	$\pm (22 + 0.15 \times F) [\mu S]$
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (22 + 0.15 \times F) [\mu S]$
		factor ≥ 8	
		-20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm (30 + 0.15 \times F) [\mu S]$
		factor < 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	$\pm (30 + 0.15 \times F) [\mu S]$
		factor ≥ 8	
		-33 dBm ≤ Oscillator level < -20 dBm, Average	$\pm (50 + 0.15 \times F) [\mu S]$
		factor < 8	
		Oscillator level < -33 dBm	$\pm (100 + 0.15 \times F) [\mu S]$

Measurement error may exceed the specifications described above at 90 MHz due to the E4982A's spurious characteristics.

Examples of Calculated Impedance Measurement Accuracy

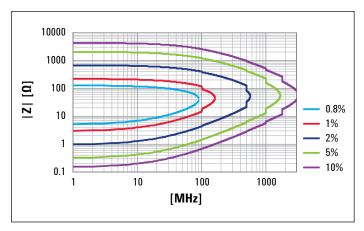


Figure 1. Measurement Time: Mode 3, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation \le 5 °C

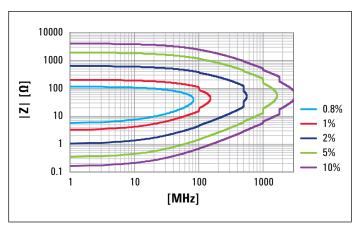


Figure 2. Measurement Time: Mode 2, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation \le 5 °C

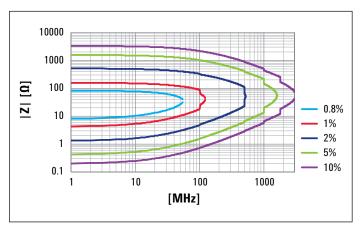


Figure 3. Measurement Time: Mode 1, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation \le 5 °C

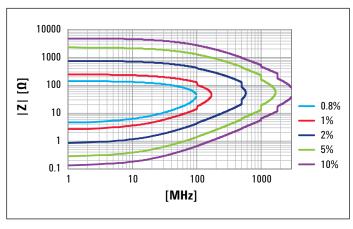


Figure 4. Measurement Time: Mode 3, Oscillator Level = 1 dBm, Averaging Factor \geq 8, Temperature Deviation \leq 5 °C



Figure 5. Measurement Time: Mode 2, Oscillator Level = 1 dBm, Averaging Factor \geq 8, Temperature Deviation \leq 5 °C

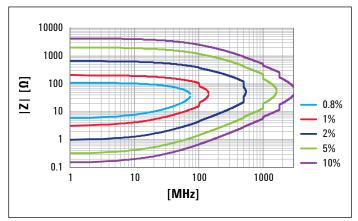


Figure 6. Measurement Time: Mode 1, Oscillator Level = 1 dBm, Averaging Factor \geq 8, Temperature Deviation \leq 5 °C

Timing Chart and Measurement Time (SPD)

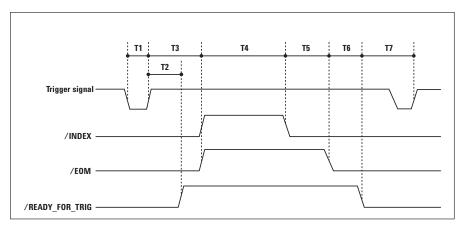


Figure 7. Timing chart of handler interface signal.

Cycle Time

		Test condition		Timing												
		rest condition			Mod	le 1 (1 N	/IHz)	Mode	1 (100	MHz)		Mode 2			Mode 3	
		Screen setting	Rdc meas.	Comparator	Min.	Median	Мах.									
T1	Trigger pulse width	-	Off	Off	2 μs	_	-	2 μs	-	-	2 μs	-	-	2 μs	-	-
T2	Trigger response time of	_	Off	Off		-	< 50		-	< 50		-	< 50		-	< 50
	Ready_for_Trig						μs			μs			μs			μs
Т3	Trigger response time	_	Off	Off		_	< 50		_	< 50		_	< 50		_	< 50
	(INDEX, EOM)	4 1 .					μs			μs			μs			μs
T4	Measurement time (INDEX)	1 point	Off	Off	_	1.6	1.6		0.9	0.9		2.1	2.1		3.7	3.7
		meas	0-	Ott		ms	ms									
		(Preset)	On	Off	_	4.5 ms	4.5 ms		3.8 ms	3.8 ms		5.0 ms	5.0 ms		6.6 ms	6.6 ms
T4	Measurement data	1 point	Off	Off	_	1.6	1.8		0.9	1.1		2.1	2.3		3.7	4.0
+	calculation time (EOM)	meas	UII	UII	_	ms	ms		ms	ms		ms	ms		ms	ms
T5	Calculation time (LOW)	(Preset)	Off	On	_	1.7	1.9	_	1.0	1.2	_	2.2	2.7	_	3.8	4.1
		(110301)	011	011		ms	ms									
T4	Ready_for_Trig setting time	1 point	Off	Off	_	1.8	2.2	_	1.1	1.4	_	2.3	2.8	_	3.9	4.4
+	, 0	meas.				ms	ms									
T5		Ls-Q	Off	On	_	1.9	2.3	_	1.2	1.9	_	2.4	3.3	_	4.0	4.5
+		meas.				ms	ms									
T6			On	Off	_	5.1	5.6	_	4.4	4.9	_	5.6	6.1	_	7.2	7.7
						ms	ms									
			On	On	-	5.2	5.7	_	4.5	4.9	-	5.7	6.3	-	7.2	7.8
						ms	ms									
T7	Trigger wait time	-	-	-	0	-	-	0	-	-	0	_	_	0	_	-

Condition: Display Off or : DISP : UPD OFF, Trigger delay=0, Point delay=0

E4982A OS: Windows 7 (Serial Prefix: MY523)

Test Condition for Measurement Time

The measurement time of E4982A is scattered to some extent by an overhead of the internal operation system and other conditions, so it is difficult to define the specification of handler interface timing. Thus, for your reference, we provide "SPD" data on it in table by defining the following test condition.

Median: Median value of running one minute of measurement data **Max.:** Maximum value of running one minute of measurement data

NOTE

- 1. The instrument's operating system sometimes suffers interruptions during measurement, and we sometimes observe an extremely large overhead in handler interface timings. The table excludes such special cases, thus you can sometimes see timing over the maximum value data shown in the table. If you make a handshake using the READY_FOR_TRIGGER signal of the handler interface, your test system can continue to work correctly regardless of such an irregular measurement time drift.
- 2. If your system communicates with external devices, you will see longer timing results than those on the table.
- 3. In the case of using a bus trigger in the GPIB/LAN/USB system instead of the handler interface, you should measure the test cycle time for yourself, because the system performance depends heavily on the system parameters. Of course, you will see much longer test cycle times from your system software overhead.

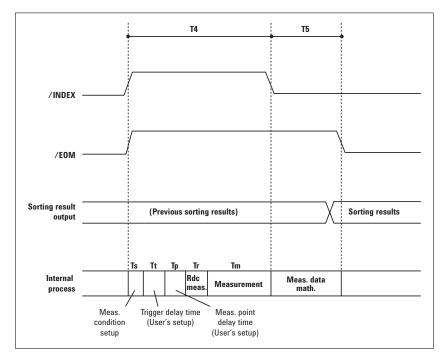


Figure 8. Measurement time T4 for single point measurement.

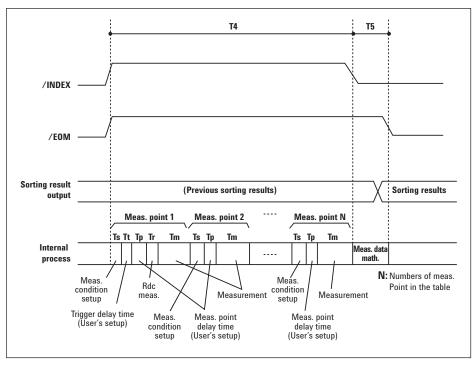


Figure 9. Measurement time T4 for list measurement.

Data Transfer Time (Typical)

Mode 3

Data transfer format	Number of measurement	Required time for FETCh? command (ms)						
Data transfer format	points	GPIB	USB	LAN (Socket)				
	1	0.4	0.4	0.6				
ASCII	2	0.7	0.4	0.6				
	3	1.0	0.4	0.7				
	1	0.5	1.1	0.6				
Binary	2	0.5	1.1	0.5				
	3	0.6	1.1	0.6				

Host computer	DELL PRECISION 390 Intel Core2Duo 6300 1.86 GHz/RAM: 2 GB				
GPIB I/F	Keysight Technologies, Inc. PCI GPIB E2078A/82350A				
IO Lib	Keysight IO Libraries Suite 16.1.14931.0				
E4982A setting					
Frequency	100 MHz				
OSC level	0 dBm				
Average	1				
Display	Off				
List measurement					
Measurement parameter	Ls-Q (Parameters No.3 and 4: Off)				
Measurement signal level monitor	Off				
Comparator	Off				
Rdc measurement	Off				

Measurement Support Functions

Error correction function

Available calibration and compensation	ation
OPEN/SHORT/LOAD calibration	Connect OPEN, SHORT, and LOAD standards to the desired reference plane and measure each kind of calibration data. The reference plane is called calibration reference plane.
Low-Loss capacitor calibration	Connect the dedicated standard (Low-Loss capacitor) to the calibration reference plane and measure the calibration data.
Port extension compensation (Fixture selection)	When a device is connected to the terminal that is extended from the calibration reference plane, set the electrical length between the calibration plane and the device contact. Select a model number of the registered
OPEN/SHORT compensation	test fixtures in the E4982A's softkey menu or enter the electrical length for user's test fixture. When a device is connected to the terminal that is extended from the calibration reference plane, make OPEN
Calibration/compensation data me	and/or SHORT states at the device contact and measure each kind of compensation data.
Data measurement points	Same as measurement points which are set in the measurement point setup display. (Changing the frequency, oscillator level, or measurement time settings after the calibration or compensation makes the calibration and compensation data invalid.)
DC resistance (Rdc) mea	surement
Measurement range	0.1 Ω to 100 Ω
Measurement resolution	1 mΩ
Test signal level	1 mA (maximum)
Error correction	OPEN/SHORT/LOAD Calibration, OPEN/SHORT Compensation. (Changing the frequency or oscillator level settings after the calibration or compensation makes the calibration and compensation data invalid.)
Measurement uncertainty (SPD)	$\pm \left[1 + \left(\frac{0.05}{\text{Rdut}} + \frac{\text{Rdut}}{10000}\right) \times 100\right] \left[\%\right] \text{Rdut}: \text{DC resistance measurement value } \left[\Omega\right]$
	(At averaging factor=128, within \pm 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 °C \pm 5 °C. When the calibration is performed beyond 23 °C \pm 5 °C, the measurement accuracy decreases to half that described.)
Trigger function	
Trigger mode	Internal, External (external trigger input connector or handler interface), Bus (GPIB, USB or LAN), Manual (front key)
Measurement time	
Time	Mode 1 (Short), Mode 2 (Mid), Mode 3 (Long)
Averaging function	
Setting range	1 to 100 (integer)
List measurement function	on
Number of measurement points	201 points for each table (maximum)
NI I CI II	0+-11-

8 tables

Number of tables

Test signal level monitor function

Uncertainty of monitor value (SPD) $\pm \left[30 + \left(10^{\frac{A}{20}} - 1\right) \times 100 + B\right] [\%]$

A: Uncertainty of oscillator level [dB], B: Uncertainty of impedance measurement [%]

Front panel

Ports	Type N (3 ea.) connected to test head	
Display	Type/size	10.4 inch TFT color LCD
	Resolution	XGA (1024 × 768) ¹
USB	Universal serial bus jack, Type A confi	guration; female; provides connection to mouse, key board, printer or USB
	stick memory.	

Measurement terminal (at test head)

Connector type 3.5-mm (female) connector (Can be converted to 7-mm connector using the 3.5 mm to 7 mm adapter)
--

Rear panel

External reference signal input of	connector
Frequency	10 MHz ± 10 ppm (Typ.)
Level	0 dBm ± 3 dB (Typ.)
Input impedance	50 Ω (nominal)
Connector type	BNC (female)
Internal reference signal output	connector
Frequency	10 MHz ± 10 ppm (Typ.)
Uncertainty of frequency	Same as frequency uncertainty described in "Source Characteristics".
Level	$0 \text{ dBm} \pm 3 \text{ dB}$ into 50Ω (Typ.)
Output impedance	50 Ω (nominal)
Connector type	BNC (female)
External trigger signal input con	nector
Level	LOW threshold voltage: 0.5 V
	HIGH threshold voltage: 2.1 V
	Input level range: 0 to +5 V
Pulse width (Tp)	\geq 2 µsec (SPD). See the following figure for definition of Tp
Polarity	Positive or negative (Selective)
Connector type	BNC (female)

^{1.} Valid pixels are 99.99% and more. Below 0.01% of fixed points of black, blue, green or red are not regarded as failure.

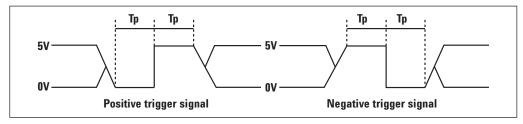


Figure 10. Definition of pulse width (Tp).

Interface

GPIB	24-pin D-Sub (Type D-24), female; compatible with IEEE-488.
	IEEE-488 interface specification is designed to be used in environment where electrical noise is relatively low.
	LAN or USBTMC interface is recommended to use at the higher electrical noise environment.
USB host port	Universal serial bus jack, Type A configuration; female; provides connection to mouse, key board, printer or USB
	stick memory.
USB (USBTMC) interface port	Universal serial bus jack, Type B configuration (4 contacts inline); female; provides connection to an external PC;
	compatible with USBTMC-USB488 and USB 2.0.LA
	USB Test and Measurement Class (TMC) interface that communicates over USB, complying with the IEEE 488.1
	and IEEE 488.2 standards.
LAN	10/100/1000 Base T Ethernet, 8-pin configuration; auto selects between the two data rates
Video output	15-pin mini D-Sub; female; drives VGA compatible monitors

Handler interface

Connector type	36-pin centronics, female
Signal type	Negative logic, opto-isolated, open collector output
Output signal	BIN sort result (BIN 1 to BIN 13, OUT_OF_GOOD_BINS)
	DC resistance pass/fail (DCR_OUT_OF_RANGE)
	Overload (OVLD)
	Alarm (ALARM)
	End of analog measurement (INDEX)
	End of measurement (EOM)
	Ready for trigger (READY_FOR_TRIG)
Input signal	Eternal trigger (EXT_TRIG)
	Key lock (KEY_LOCK)
Pin location	See the following figure. Refer to Help for the definition of each pin.

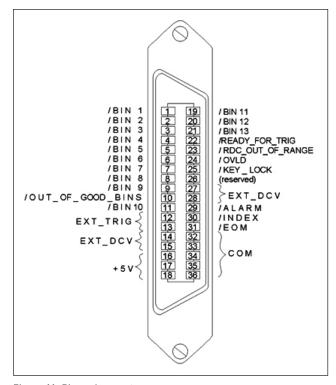


Figure 11. Pin assignment.

Line power

Frequency	47 to 63 Hz	
Voltage	90 to 264 VAC (Vpeak > 120 V)	
VA max	300 VA max.	

EMC, safety, environment and compliance

EMC

European Council Directive 2004/108/EC

IEC 61326-1:2012 EN 61326-1:2013

CISPR 11:2009 +A1:2010

EN 55011: 2009 +A1:2010

Group 1, Class A

IEC 61000-4-2:2008

EN 61000-4-2:2009

4 kV CD / 8 kV AD

IEC 61000-4-3:2006 +A1:2007 +A2:2010

EN 61000-4-3:2006 +A1:2008 +A2:2010

3 V/m, 80-1000 MHz, 1.4 - 2.0 GHz / 1V/m, 2.0 to 2.7 GHz, 80% AM

IEC 61000-4-4:2004 +A1:2010

EN 61000-4-4:2004 +A1:2010

1 kV power lines / 0.5 kV signal lines

IEC 61000-4-5:2005

EN 61000-4-5:2006

0.5 kV line-line / 1 kV line-ground

IEC 61000-4-6:2008

EN 61000-4-6:2009

3 V, 0.15-80 MHz, 80% AM

IEC 61000-4-8:2009

EN 61000-4-8:2010

30A/m, 50/60Hz

IEC 61000-4-11:2004

EN 61000-4-11:2004

0.5--300 cycle, 0% / 70%

NOTE-1:

When tested at 3 V/m according to EN61000-4-3, the measurement accuracy will be within specifications over the full immunity test frequency range except when the analyzer frequency is identical to the transmitted interference signal test frequency.

NOTE-2:

When tested at 3 V according to EN61000-4-6, the measurement accuracy will be within specifications over the full immunity test frequency range except when the analyzer frequency is identical to the transmitted interference signal test frequency.

ICES/NMB-001

ICES-001:2006 Group 1, Class A AS/NZS CISPR11:2004

KN11, KN61000-6-1 and KN61000-6-2

Group 1, Class A

Group 1, Class A

EMC, safety, environment and compliance (Continued)

Safety

European Council Directive 2006/95/EC IEC 61010-1:2001 / EN 61010-1:2001 Measurement Category I Pollution Degree 2 Indoor Use

NOTE-1:

When tested at 3 V/m according to EN61000-4-3, the measurement accuracy will be within specifications over the full immunity test frequency range except when the analyzer frequency is identical to the transmitted interference signal test frequency.

NOTE-2:

Indoor Use

When tested at 3 V according to EN61000-4-6, the measurement accuracy will be within specifications over the full immunity test frequency range except when the analyzer frequency is identical to the transmitted interference signal test frequency.

CAN/CSA C22.2 No. 61010-1-04 Measurement Category I Pollution Degree 2

Environment

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product. Do not dispose in domestic household waste.

To return unwanted products, contact your local Keysight Office.

Compliance

Class C

Environmental Specifications and Dimensions

Operating environment	
Temperature	+5 °C to +40 °C
Error-corrected temperature range	23 °C (\pm 5 °C) with < 5 °C deviation from calibration temperature
Humidity	20% to 80% at wet bulb temperature < +29 °C (non-condensation)
Altitude	0 to 2,000 m (0 to 6,561 feet)
Vibration	0.21 Grms maximum, 5 Hz to 500 Hz
Non-operating environment	
Temperature	-10 °C to +60 °C
Humidity	20% to 90% at wet bulb temperature < 40 °C (non-condensation)
Altitude	0 to 4,572 m (0 to 15,000 feet)
Vibration	2.1 Grms maximum, 5 Hz to 500 Hz
Dimensions, weight	
Weight	Main unit: 13 kg, test head: 250 g with plate

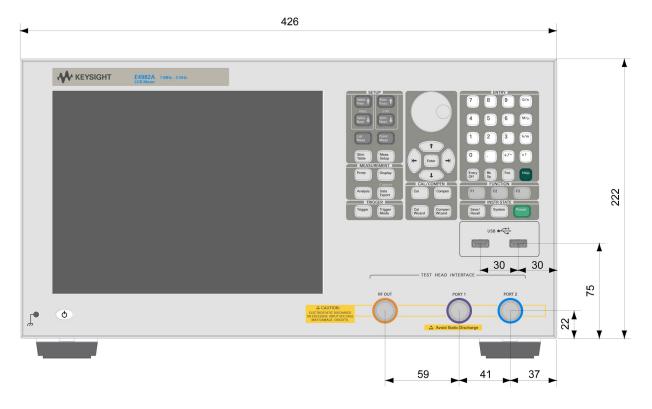


Figure 12. Front view.

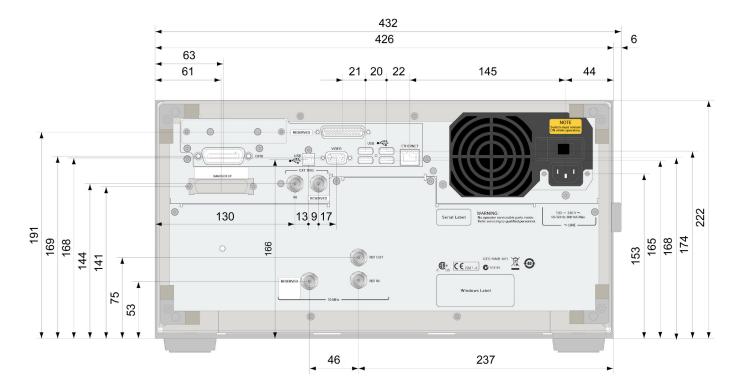


Figure 13. Rear view.

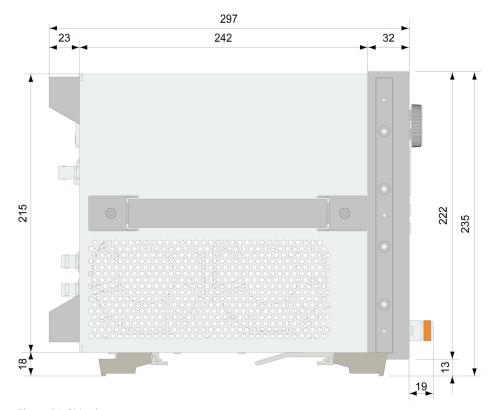
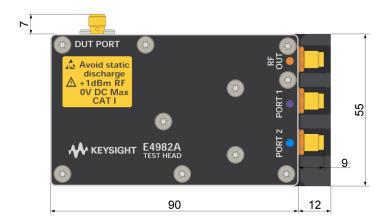



Figure 14. Side view.

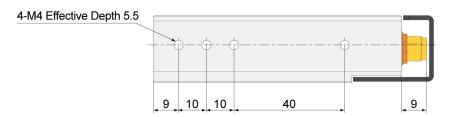


Figure 15. Test head.

绿测科技有限公司

广州总部:广州市番禺区陈边村金欧大道83号江潮创意园A栋208室

深圳分公司:深圳市龙华区龙华街道油松社区东环一路1号耀丰通工业园1-2栋2栋607南宁分公司:广西自由贸易试验区南宁片区五象大道401号五象航洋城1号楼3519号

广州分公司:广州市南沙区凤凰大道89号中国铁建·凤凰广场B栋1201房

电话: 020-2204 2442 传真: 020-8067 2851

邮箱: Sales@greentest.com.cn 官网: www.greentest.com.cn

微信视频号

绿测科技订阅号

绿测工场服务号